DiReT: An effective discriminative dimensionality reduction approach for multi-source transfer learning
نویسندگان
چکیده
منابع مشابه
Transfer Learning via Dimensionality Reduction
Transfer learning addresses the problem of how to utilize plenty of labeled data in a source domain to solve related but different problems in a target domain, even when the training and testing problems have different distributions or features. In this paper, we consider transfer learning via dimensionality reduction. To solve this problem, we learn a low-dimensional latent feature space where...
متن کاملUnsupervised Dimensionality Reduction for Transfer Learning
We investigate the suitability of unsupervised dimensionality reduction (DR) for transfer learning in the context of different representations of the source and target domain. Essentially, unsupervised DR establishes a link of source and target domain by representing the data in a common latent space. We consider two settings: a linear DR of source and target data which establishes corresponden...
متن کاملDiscriminative Unsupervised Dimensionality Reduction
As an important machine learning topic, dimensionality reduction has been widely studied and utilized in various kinds of areas. A multitude of dimensionality reduction methods have been developed, among which unsupervised dimensionality reduction is more desirable when obtaining label information requires onerous work. However, most previous unsupervised dimensionality reduction methods call f...
متن کاملJoint discriminative dimensionality reduction and dictionary learning for face recognition
In linear representation based face recognition (FR), it is expected that a discriminative dictionary can be learned from the training samples so that the query sample can be better represented for classification. On the other hand, dimensionality reduction is also an important issue for FR. It can not only reduce significantly the storage space of face images, but also enhance the discriminati...
متن کاملDiscLDA: Discriminative Learning for Dimensionality Reduction and Classification
Probabilistic topic models have become popular as methods for dimensionality reduction in collections of text documents or images. These models are usually treated as generative models and trained using maximum likelihood or Bayesian methods. In this paper, we discuss an alternative: a discriminative framework in which we assume that supervised side information is present, and in which we wish ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientia Iranica
سال: 2017
ISSN: 2345-3605
DOI: 10.24200/sci.2017.4113